The emergence of abnormal hypersynchronization in the anatomical structural network of human brain
نویسندگان
چکیده
Brain activity depends on transient interactions between segregated neuronal populations. While synchronization between distributed neuronal clusters reflects the dynamics of cooperative patterns, the emergence of abnormal cortical hypersynchronization is typically associated with spike-wave discharges, which are characterized by a sudden appearance of synchronous around 3Hz large amplitude spike-wave discharges of the electroencephalogram. While most existing studies focus on the cellular and synaptic mechanisms, the aim of this article is to study the role of structural connectivity in the origin of the large-scale synchronization of the brain. Simulating oscillatory dynamics on a human brain network, we find the space-time structure of the coupling defined by the anatomical connectivity and the time delays can be the primary component contributing to the emergence of global synchronization. Our results suggest that abnormal white fiber connections may facilitate the generation of spike-wave discharges. Furthermore, while neural populations can exhibit oscillations in a wide range of frequency bands, we show that large-scale synchronization of the brain only occurs at low frequencies. This may provide a potential explanation for the low characteristic frequencies of spike-wave discharges. Finally, we find the global synchronization has a clear anterior origin involving discrete areas of the frontal lobe. These observations are in agreement with existing brain recordings and in favor of the hypothesis that initiation of spike-wave discharges originates from specific brain areas. Further graph theory analysis indicates that the original areas are highly ranked across measures of centrality. These results underline the crucial role of structural connectivity in the generation of spike-wave discharges.
منابع مشابه
Brain Structural Covariance Network in Asperger Syndrome Differs From Those in Autism Spectrum Disorder and Healthy Controls
Introduction: Autism is a heterogeneous neurodevelopmental disorder associated with social, cognitive and behavioral impairments. These impairments are often reported along with alteration of the brain structure such as abnormal changes in the grey matter (GM) density. However, it is not yet clear whether these changes could be used to differentiate various subtypes of autism spectrum disorder ...
متن کاملAnatomical Variations of Circle of Willis in 57 Human Brains
Purpose: The circle of willis is responsible for blood supply of brain, which may suffer from anatomical variations. These disturbances can lead to aneurysm or even arterial rupture. The purpose of this study was to evaluate the anatomical structure of the cerebral arteries forming the circle of willis in adult cadavers. Also, cerebral versus non- cerebral versus non-cerebral arterial walls wer...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملP27: Brain Network as a Pivotal Part in Intelligence Function
Neuroimaging findings have proposed that some brain regions including the precuneus, posterior cingulate, and medial prefrontal cortex play an essential role of a structural core in the brain. Network organization endures rapid alterations in development with changes in axonal synaptic connectivity, white matter volume, and the thickness of corresponding cortical regions. Structural maturation ...
متن کاملPrevalence and Length of Cavum Septi Pellucidi in Normal Adult Human Brains Using Magnetic Resonance Imaging
Purpose: In view of the fact that the reported prevalence of cavum septi pellucidi (CSP) in normal adult human brains varies enormously from 0.1% to 87.5% and that this prevalence has not been yet studied in Iran, this study was designed to determine the prevalence and length of CSP in normal adult human brains using magnetic resonance imaging (MRI). Materials and Methods: 29 healthy volunteer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 65 شماره
صفحات -
تاریخ انتشار 2013